Sains Malaysiana 53(2)(2024): 447-459
http://doi.org/10.17576/jsm-2024-5302-17
Optimizing Degradable
Plastic Density Prediction: A Coarse-to-Fine Deep Neural Network Approach
(Mengoptimumkan Ramalan Ketumpatan Plastik Terdegradasi: Pendekatan Rangkaian Neuron Dalam Carian Kasar-ke- Halus)
SYAMSIAH ABU BAKAR1,2,*, SAIFUL IZZUAN HUSSAIN2 & ZIROUR
MOURAD3
1Department
of Mathematics, Universiti Kuala Lumpur Malaysia
France Institute, 43650 Bandar Baru Bangi, Selangor, Malaysia
2School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
3France Collaboration Programme, Universiti Kuala Lumpur Malaysia France Institute, 43650 Bandar Baru Bangi, Selangor, Malaysia
Received: 7 July
2023/Accepted: 15 January 2024
Abstract
Density is an important property for the
production of high-quality degradable plastics. Density is useful to determine
the type of plastic material and to detect physical changes in the plastic
material. In this paper, a novel technique for predicting the density of
degradable plastics using Deep Neural Networks (DNN) is presented. The aim was
to reduce the dimension of the inputs in order to establish a strong
relationship between the inputs using principal component analysis (PCA). The
results show that the combination of polyethylene, oil palm biomass, starch and
palm oil has a greater impact on predicting the
density of degradable plastics. Subsequently, the number of hidden neurons is
determined by a coarse-to-fine search to develop the network topology of the
DNN model for predicting the density of degradable plastics. The developed DNN
model consists of 4 input neurons, 62 neurons in the first hidden layer, 31
neurons in the second hidden layer and one output neuron. The developed DNN
model showed high accuracy with the lowest values for RMSE, MAE and MSE,
indicating that the use of a DNN model is a suitable method for predicting the
density of degradable plastics. Furthermore, this study has the potential to
make rapid and accurate predictions about the physical properties of degradable
plastics in the context of polymers.
Keywords: Deep Neural Networks; degradable
plastics; density
Abstrak
Ketumpatan adalah sifat penting untuk pengeluaran plastik terurai berkualiti tinggi. Ketumpatan berguna untuk menentukan jenis bahan plastik dan untuk mengesan perubahan fizikal dalam bahan plastik. Dalam kajian ini, teknik baharu untuk meramalkan ketumpatan plastik terurai menggunakan Rangkaian Neuron Dalam (DNN) dibentangkan. Matlamatnya adalah untuk mengurangkan dimensi input bagi mewujudkan hubungan yang kukuh antara input menggunakan analisis komponen utama (PCA). Keputusan menunjukkan bahawa gabungan polietilena, biojisim kelapa sawit, kanji dan minyak sawit mempunyai kesan yang lebih besar dalam meramalkan ketumpatan plastik terurai. Seterusnya, bilangan neuron tersembunyi ditentukan oleh carian kasar ke halus untuk membangunkan topologi rangkaian model DNN untuk meramalkan ketumpatan plastik terdegradasi. Model DNN yang dibangunkan terdiri daripada 4 neuron
input, 62 neuron dalam lapisan tersembunyi pertama, 31
neuron dalam lapisan tersembunyi kedua dan satu neuron output. Model DNN yang dibangunkan menunjukkan ketepatan yang tinggi dengan nilai terendah untuk RMSE, MAE
dan MSE, menunjukkan bahawa penggunaan model DNN adalah kaedah yang sesuai untuk meramalkan ketumpatan plastik terdegradasi. Selain itu, kajian ini berpotensi untuk membuat ramalan yang cepat dan tepat tentang sifat fizikal plastik terdegradasi dalam konteks polimer.
Kata kunci: Ketumpatan; plastik terdegradasi; Rangkaian Neuron Dalam
REFERENCES
Azman, B.M., Hussain, S.I., Azmi, N.A., Athir, M.Z., Ghani, A. &
Norlen, N.I.D. 2022. Prediction of distant recurrence in breast cancer using a
deep neural network. Revista Internacional
de Métodos Numéricos para Cálculo y Diseño en Ingeniería 38(1).
https://www.scipedia.com/public/Azman_et_al_2021a
Bakar, S.A., Hussain, S.I.,
Zirour, M. & Noor, M.F.M. 2023. Principal component analysis and deep
neural networks in modeling the melt flow index of degradable plastics. International Journal of Advances in
Engineering Sciences and Applied Mathematics https://doi.org/10.1007/s12572-023-00352-5
Doukim, C.A., Dargham, J.A.
& Chekima, A. 2010. Finding the number of hidden neurons for an MLP neural
network using coarse to fine search technique. 10th International Conference on Information Science, Signal Processing
and Their Applications (ISSPA 2010). pp. 606-609.
Doukim, C.A., Dargham, J.A.,
Chekima, A. & Omatu, S. 2011. Combining neural networks for skin detection. arXiv:1101.0384.
Dugvekar, M. & Dixit, S.
2021. High density polyethylene composites reinforced by jute fibers and rice
stalk dust: A mechanical study. Materials
Today: Proceedings 47: 5966-5969.
Etim, A.O. 2022. Experimental
and computational exploration of advanced biodiesel fuels and hybridisation
process evaluation of feedstocks and their chemical combinations. PhD Thesis.
Durban University of Technology (Unpublished).
Gimenez‐Nadal, J.I.,
Molina, J.A. & Velilla, J. 2019. Modelling commuting time in the US:
Bootstrapping techniques to avoid overfitting. Papers in Regional Science 98(4): 1667-1684.
Huang, G-B. 2003. Learning
capability and storage capacity of two-hidden-layer feedforward networks. IEEE Transactions on Neural Networks 14(2): 274-281.
Jahedsaravani, A., Marhaban,
M.H. & Massinaei, M. 2016. Application of statistical and intelligent
techniques for modeling of metallurgical performance of a batch flotation
process. Chemical Engineering
Communications 203(2): 151-160.
Jahedsaravani, A., Marhaban,
M. & Massinaei, M. 2014. Prediction of the metallurgical performances of a
batch flotation system by image analysis and neural networks. Minerals Engineering 69: 137-145.
Khaki, S. & Wang, L.
2019. Crop yield prediction using deep neural networks. Frontiers in Plant Science 10: 621.
https://doi.org/10.3389/fpls.2019.00621
Khan, S.M., Malik, S.A.,
Gull, N., Saleemi, S., Islam, A. & Butt, M.T.Z. 2019. Fabrication and
modelling of the macro-mechanical properties of cross-ply laminated
fibre-reinforced polymer composites using artificial neural network. Advanced Composite Materials 28(4):
409-423.
Leong, Y.K., Chang, C-K.,
Arumugasamy, S.K., Lan, J.C-W., Loh, H-S., Muhammad, D. & Show, P.L. 2018.
Statistical design of experimental and bootstrap neural network modelling
approach for thermoseparating aqueous two-phase extraction of
polyhydroxyalkanoates. Polymers 10(2): 132.
Liang, H., Zhang, S., Sun,
J., He, X., Huang, W., Zhuang, K. & Li, Z. 2019. Darts+: Improved
differentiable architecture search with early stopping. arXiv:1909.06035.
Mairpady, A., Mourad, A-H.I.
& Mozumder, M.S. 2021. Statistical and machine learning-driven optimization
of mechanical properties in designing durable hdpe nanobiocomposites. Polymers 13(18): 3100.
Mohammadi, F., Bina, B.,
Karimi, H., Rahimi, S. & Yavari, Z. 2020. Modeling and sensitivity analysis
of the alkylphenols removal via moving bed biofilm reactor using artificial
neural networks: Comparison of levenberg marquardt and particle swarm optimization
training algorithms. Biochemical
Engineering Journal 161: 107685.
Muraina, I.O. 2022. Ideal
dataset splitting ratios in machine learning algorithms: General concerns for
data scientists and data analysts. 7th
International Mardin Artuklu Scientific Research Conference, Mardin,
Turkey. pp. 496-504.
Narine, L.L., Popescu, S.C.
& Malambo, L. 2019. Synergy of ICESat-2 and landsat for mapping forest
above ground biomass with deep learning. Remote
Sensing 11(12): 1503.
Nguyen, Q.H., Ly, H-B., Ho,
L.S., Al-Ansari, N., Le, H.V., Tran, V.Q., Prakash, I. & Pham, B.T. 2021.
Influence of data splitting on performance of machine learning models in
prediction of shear strength of soil. Mathematical
Problems in Engineering 2021: 4832864.
Popoola, S.I., Jefia, A.,
Atayero, A.A., Kingsley, O., Faruk, N., Oseni, O.F. & Abolade, R.O. 2019.
Determination of neural network parameters for path loss prediction in very
high frequency wireless channel. IEEE
Access 7: 150462-150483.
Raja, V., Santhamoorthy, M.,
Alagumalai, K., Haldhar, R., Raorane, C.J., Raj, V. & Kim, S-C. 2022. Novel
approach in biodegradation of synthetic thermoplastic polymers: An overview. Polymers 14(20): 4271.
Rosli, N.A., Wan Ishak, W.H.
& Ahmad, I. 2021. Eco-friendly high-density polyethylene/amorphous
cellulose composites: Environmental and functional value. Journal of Cleaner
Production 290: 125886.
Salunke, A. 2022.
Bio-degradable plastic from corn starch & cassava starch. International Research Journal of
Modernization in Engineering Technology and Science 4: 959-964.
Shahin, M.A., Maier, H.R.
& Jaksa, M.B. 2000. Evolutionary Data
Division Methods for Developing Artificial Neural Network Models in
Geotechnical Engineering. Report number R171, Dept. Civil & Env.
Engrg., University of Adelaide.
Shin-Ike, K. 2010. A two
phase method for determining the number of neurons in the hidden layer of a
3-layer neural network. Proceedings of
SICE Annual Conference 2010. pp.
238-242.
Swamidass, P.M. 2000.
Forecasting mean percentage error in mean percentage error (MPE). Encyclopedia of Production and Manufacturing
Management. Boston: Springer US. pp. 462-463.
Zaman, H. & Beg, M.D.H.
2021. Effect of filler starches on mechanical, thermal and degradation
properties of low-density polyethylene composites. Progress in Applied Science and Technology 11(2): 26-36.
Zaman, H. & Khan, R.A.
2021. Improving the physico-mechanical and degradable properties of
thermoplastic polymer with modified starch blend composites for food packaging
applications. Progress in Applied Science
and Technology 11(3): 1-8.
*Corresponding
author; email: syamsiah@unikl.edu.my
|